The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis
Gonzalo Ramírez-Sagner and
Francisco D. Muñoz
Renewable and Sustainable Energy Reviews, 2019, vol. 105, issue C, 38-47
Abstract:
Planning for new generation infrastructure in hydrothermal power systems requires consideration of a series of nonlinearities that are often ignored in planning models for policy analysis. In this article, three different capacity-planning models are used, one nonlinear and two linear ones, with different degrees of complexity, to quantify the impact of simplifying the head dependency of hydropower generation on investments in both conventional and renewable generators and system operations. It was found that simplified investment models can bias the optimal generation portfolios by, for example, understating the need for coal and combined-cycle gas units and overstating investments in wind capacity with respect to a more accurate nonlinear formulation, which could affect policy recommendations. It was also found that the economic cost of employing a simplified model can be below 10% of total system cost for most of the scenarios and system configurations analyzed, but as high as nearly 70% of total system cost for specific applications. Although these results are not general, they suggest that for certain system configurations both linear models can provide reasonable approximations to more complex nonlinear formulations. Uncertain water inflows were also considered using stochastic variants of all three planning models. Interestingly, if due to time or computational limitations only one of these two features could be accounted for, these results indicate that explicit modeling of the nonlinear-head effect in a deterministic model could yield better results (up to 0.6% of economic regret) than a stochastic linear model (up to 9.6% of economic regret) that considers the uncertainty of water inflows.
Keywords: Generation planning; Hydropower; Policy analysis; Simplifications; Uncertainty (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032118308177
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:105:y:2019:i:c:p:38-47
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2018.12.021
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).