Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review
Feng Jiang,
Lingling Zhang,
Xiaohui She,
Chuan Li,
Daqiang Cang,
Xianglei Liu,
Yimin Xuan and
Yulong Ding
Renewable and Sustainable Energy Reviews, 2020, vol. 119, issue C
Abstract:
Inorganic salts can be used as phase change materials (PCMs) for high temperature (>200 °C) thermal energy storage. Advantages of such PCMs include a wide range of phase change temperatures, high energy density, excellent physical/chemical stability and low price. However, applications of above salts based PCMs are greatly limited due to their corrosion to container materials and low thermal conductivity. These problems can be resolved by integrating salts to a porous skeleton, forming the so-called shape-stabilized PCMs (ss-PCMs). The ss-PCMs typically consist of an inorganic salt and a porous skeleton with the former for thermal energy storage and the latter both as a shape stabilizer and a thermal conductivity enhancer. The porous skeleton, made from packing of skeleton materials, is shown to effectively prevent leakage of loaded salts due to capillary force and surface tension. The generated porous skeleton also improves the thermal conductivity of ss-PCMs by providing a high thermally conductive heat transfer path. This review therefore focuses on the skeleton materials for high temperature salts based ss-PCMs, covering selection principles, types and current status of skeleton materials, formation mechanisms of porous skeletons generated from skeleton materials, and effects of different porous skeletons on mechanical and thermophysical properties of ss-PCMs, such as mechanical strength, phase transition temperature, latent heat, thermal conductivity, and cycling stability. Fabrication methods and applications of the ss-PCMs have been also summarized. To the best of our knowledge, this is the first profound review of skeleton materials for salts based ss-PCMs for high temperature applications.
Keywords: Thermal energy storage; Skeleton materials; Phase change materials; Porous skeleton; High temperature salts; Shape-stabilization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119307476
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307476
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.109539
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().