Biochar-based adsorbents for carbon dioxide capture: A critical review
Pavani Dulanja Dissanayake,
Siming You,
Avanthi Deshani Igalavithana,
Yinfeng Xia,
Amit Bhatnagar,
Souradeep Gupta,
Harn Wei Kua,
Sumin Kim,
Jung-Hwan Kwon,
Daniel C.W. Tsang and
Yong Sik Ok
Renewable and Sustainable Energy Reviews, 2020, vol. 119, issue C
Abstract:
Carbon dioxide (CO2) is the main anthropogenic greenhouse gas contributing to global warming, causing tremendous impacts on the global ecosystem. Fossil fuel combustion is the main anthropogenic source of CO2 emissions. Biochar, a porous carbonaceous material produced through the thermochemical conversion of organic materials in oxygen-depleted conditions, is emerging as a cost-effective green sorbent to maintain environmental quality by capturing CO2. Currently, the modification of biochar using different physico-chemical processes, as well as the synthesis of biochar composites to enhance the contaminant sorption capacity, has drawn significant interest from the scientific community, which could also be used for capturing CO2. This review summarizes and evaluates the potential of using pristine and engineered biochar as CO2 capturing media, as well as the factors influencing the CO2 adsorption capacity of biochar and issues related to the synthesis of biochar-based CO2 adsorbents. The CO2 adsorption capacity of biochar is greatly governed by physico-chemical properties of biochar such as specific surface area, microporosity, aromaticity, hydrophobicity and the presence of basic functional groups which are influenced by feedstock type and production conditions of biochar. Micropore area (R2 = 0.9032, n = 32) and micropore volume (R2 = 0.8793, n = 32) showed a significant positive relationship with CO2 adsorption capacity of biochar. These properties of biochar are closely related to the type of feedstock and the thermochemical conditions of biochar production. Engineered biochar significantly increases CO2 adsorption capacity of pristine biochar due to modification of surface properties. Despite the progress in biochar development, further studies should be conducted to develop cost-effective, sustainable biochar-based composites for use in large-scale CO2 capture.
Keywords: Black carbon; CO2 capture; Climate change; Engineered biochar; Greenhouse gas (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119307907
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307907
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.109582
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().