Minimization of energy demand in slaughterhouses: Estimated production of biogas generated from the effluent
Amanda Junkes Vilvert,
Joaquim Carlos Saldeira Junior,
Ivonete Rossi Bautitz,
Dilcemara Cristina Zenatti,
Maurício Guy Andrade and
Eliane Hermes
Renewable and Sustainable Energy Reviews, 2020, vol. 120, issue C
Abstract:
Many studies have evaluated agroindustrial effluent treatment systems. However, the use of quality control tools in this area is still not widespread, while reports of the use of such tools to monitor slaughterhouse waste treatment systems are practically non-existent. Investigation of exploitation of the energy potential of waste produced within these industries is a strategically important issue, considering the current drive to minimize environmental impacts and to generate power from renewable sources. Therefore, the purpose of this study was to monitor the biological treatment of effluents, using control charts, as well as to estimate the potential production of methane and biogas in a slaughterhouse in southern Brazil. Wastewater samples were collected weekly and measurements were made of ambient and liquid temperatures, pH, solids (total and volatile), chemical oxygen demand (COD), oils and greases (OG), nitrogen, and phosphorus. The potential for methane and biogas production was estimated using the average daily effluent flow rate and the average organic load removal in the anaerobic pond. The effluent treatment system was evaluated by means of the construction of control charts, using the measured variables. This enabled the identification of factors that influenced the effluent treatment process, such as changes in the affluent load, environmental conditions, waste characteristics, and mechanical and human parameters. In terms of energy potential, the use of a covered pond (biodigester) would partially meet the energy demand of the industry, which consumed approximately 66 m3 of firewood per month, hence requiring 42969 m3 of biogas per month to supply all its needs. According to theoretical data, the waste could generate around 6790 m3 of biogas, which would supply 16% of the energy demand, besides providing environmental advantages such as improved efficiency of the treatment system and reduced emissions of greenhouse gases.
Keywords: Meat industry; Wastewater; Stabilization ponds; Control charts; Anaerobic digestion; Power generation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119308214
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308214
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.109613
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().