Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge
Ehsan Ahmadi,
Samira Yousefzadeh,
Adel Mokammel,
Mohammad Miri,
Mohsen Ansari,
Hossein Arfaeinia,
Mojtaba Yegane Badi,
Hamid Reza Ghaffari,
Soheila Rezaei and
Amir Hossein Mahvi
Renewable and Sustainable Energy Reviews, 2020, vol. 121, issue C
Abstract:
The present study evaluated the performance of an integrated two-phase fixed-film baffled bioreactor for wastewater treatment with regard to its energy consumption and production. The total potential of the bioenergy recovery of the bioreactor was evaluated not only from the anaerobic wastewater treatment but also from the produced bio-wasted sludge of both phases. Statistical correlations between bio-methane production and kinetic coefficients were uncovered. Methane yields between 0.15 and 0.30 L CH4.g sCODremoved−1 were obtained during anaerobic wastewater treatment. The maximum energy recoveries from the digestion of bio-wasted sludge (sloughed biofilm) equaled 0.28 and 0.3 L CH4. g TS−1 for aerobic and anaerobic units, respectively. The Grau model was appropriate for predicting the performance of the bioreactor and the potential of bio-methane production. It was demonstrated that substrate utilization rate (Rsu) and Grau coefficient (KG) can be applied to predict the rate of methane production. Regarding the volume of treated wastewater, the energy production was in the range of 2.8–12 kWh.m−3. Moreover, the overall energy consumption of wastewater treatment was in the range of 0.32–0.79 kWh/kg sCODremoved, while the total energy production was 3.7–5.1 kWh/kg sCODremoved. Therefore, the designed bioreactor was energy positive with net energy production of 3.39–4.5 kWh/kg sCODremoved−1. The total energy requirement for both wastewater treatment and bio-wasted sludge digestion was 7–15.5% of the total energy production, and, therefore, the bioreactor is a sustainable energy process. The contribution of anaerobic wastewater treatment and anaerobic digestion of bio-wasted sludge of aerobic and anaerobic units for energy recovery as bio-methane was 53, 26, and 21%, respectively. As the bioreactor achieved more than 95% of sCOD removal and have a high bioenergy production, and since kinetic coefficients demonstrated the considerably high performance of the bioreactor, it can be of interest as an appropriate treatment process.
Keywords: Wastewater; Integrated bioreactor; Bio-wasted sludge; Bioenergy recovery; Methane biogas; Energy positive bioreactor (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119308792
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:121:y:2020:i:c:s1364032119308792
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.109674
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().