EconPapers    
Economics at your fingertips  
 

Composite “LiCl/MWCNT/PVA” for adsorption thermal battery: Dynamics of methanol sorption

I.S. Girnik, A.D. Grekova, T.X. Li, R.Z. Wang, P. Dutta, S. Srinivasa Murthy and Yu.I. Aristov

Renewable and Sustainable Energy Reviews, 2020, vol. 123, issue C

Abstract: Adsorption thermal storage and transformation (ATST) of low-temperature heat is an energy saving technology towards the efficient use of renewable and waste heat. A solid sorption thermal battery (SSTB) is a promising concept for low-grade heat storage, combined cooling and heating, integrated energy storage and energy upgrade. Current progress in SSTB is related to the selection of advanced adsorbents and cycles which are properly adapted to ATST in various climatic zones. This paper mainly addresses such adaptation for China, Russia, and India which are among the top CO2 emitters and partially for Italy and Portugal. First, climatic data for selected cities of these countries were analyzed to specify adsorbents optimal from the thermodynamic point of view. It was found that an innovative sorbent “LiCl inside Multi-Wall Carbon NanoTubes (MWCNT)” is one of the most promising and universal for SSTB operating in several selected climatic conditions.

Keywords: Adsorption heat transformation; Composite sorbent “salt/matrix”; Lithium chloride; Multiwall carbon nanotubes; Methanol; Climatic data (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120300447
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:123:y:2020:i:c:s1364032120300447

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.109748

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:123:y:2020:i:c:s1364032120300447