Probabilistic solar irradiance transposition models
Hao Quan and
Dazhi Yang
Renewable and Sustainable Energy Reviews, 2020, vol. 125, issue C
Abstract:
Transposition models convert the solar irradiance received on a horizontal surface to in-plane irradiance. All transposition models to date, unfortunately, only produce deterministic (as oppose to probabilistic) estimates. In modern energy meteorology, having the entire predictive distribution is more desirable than relying only on deterministic estimates. To that end, this paper outlines two strategies for creating probabilistic transposition models (PTMs), that can quantify the various types of uncertainty involved in the modeling process. The first strategy seeks the analytic expressions of measurement, model, and parameter uncertainty, and the final predictive variance is the sum of these three types of uncertainty. On the other hand, the second strategy directly models the overall uncertainty as a whole, and uses ensemble model output statistics to estimate the predictive distribution through optimizing a loss function. Both strategies generate estimates of tilted irradiance with Gaussian predictive distributions. As compared to their deterministic counterparts, PTMs clearly offer more insights on uncertainty quantification, during solar energy system design, simulation, performance evaluation, and power output forecasting.
Keywords: Probabilistic transposition model; Solar radiation modeling; Prediction interval; Predictive distribution (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212030109X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:125:y:2020:i:c:s136403212030109x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.109814
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().