Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach
Harsh S. Dhiman,
Dipankar Deb and
Aoife M. Foley
Renewable and Sustainable Energy Reviews, 2020, vol. 127, issue C
Abstract:
Optimal placement of turbines in a wind farm is a major challenge where the wake effect reduces the effective wind power capture. Wind speed prediction is essential from a reliability point of view. In this article, a bilateral wake model which is derived from two benchmark models, namely, Jensen's and Frandsen's variation is used for studying the performance of far-end wakes. A prediction based approach is formulated wherein the inputs to the classical SVR model are based on the two benchmark models and the proposed bilateral Gaussian wake model. Wind speed is predicted for upstream turbines of two wind farm layouts (5-turbine and 15-turbine). Further, to observe the impact of input dimensionality, two techniques: (i) Grey relational analysis (GRA) and (ii) Neighborhood component analysis (NCA), are considered. Results reveal that for a wind site WBZ tower, NCA outperforms GRA by 36.48%, 34.0% and 7.03% for Jensen's, Frandsen's and bilateral wake model respectively. When compared to the two benchmark models for both the techniques (GRA and NCA), the prediction performance of bilateral wake model is superior. Overall, it is observed that the feature selection tools like GRA and NCA improve the wind speed prediction accuracy in the presence of wind wakes.
Keywords: Feature selection; Neighborhood component analysis; Wind speed prediction; Wake effect; Gaussian model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120301660
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:127:y:2020:i:c:s1364032120301660
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.109873
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().