Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review
Ioannis Antonopoulos,
Valentin Robu,
Benoit Couraud,
Desen Kirli,
Sonam Norbu,
Aristides Kiprakis,
David Flynn,
Sergio Elizondo-Gonzalez and
Steve Wattam
Renewable and Sustainable Energy Reviews, 2020, vol. 130, issue C
Abstract:
Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time decisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and preferences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area.
Keywords: Artificial intelligence; Machine learning; Artificial neural networks; Nature-inspired intelligence; Multi-agent systems; Demand response; Power systems (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (73)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212030191X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:130:y:2020:i:c:s136403212030191x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.109899
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().