EconPapers    
Economics at your fingertips  
 

Low-emission pre-combustion gas-to-wire via ionic-liquid [Bmim][NTf2] absorption with high-pressure stripping

Hudson Bolsoni Carminati, José Luiz de Medeiros, Gustavo Torres Moure, Lara Costa Barbosa and Ofélia de Queiroz F. Araújo

Renewable and Sustainable Energy Reviews, 2020, vol. 131, issue C

Abstract: Autothermal reforming is an important pathway to hydrogen via fossil fuel decarbonization. Traditionally, the finishing step of hydrogen production via autothermal reforming consists of decarbonation via conventional aqueous-amine absorption which incurs a huge energy penalty due to high heat-ratio and low-pressure carbon dioxide stripping entailing costly compression for geological storage. This work proposes and assesses an alternative high-pressure temperature-swing hydrogen decarbonation that promotes stripping at high-pressure reducing carbon dioxide compression costs. Such new hydrogen decarbonation uses 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ionic-liquid physical-absorption due to its solute affinity, low vapor-pressure, high thermal stability and low heat consumption for carbon dioxide stripping at high-temperature and high-pressure. Technical and economic aspects of the ionic-liquid temperature-swing decarbonation are evaluated and compared with the conventional aqueous-amine decarbonation. Results showed that high-pressure ionic-liquid stripping requires 5.5 times less heat to produce a high-pressure carbon dioxide stream and reduces 4.3 times its compression power. These results directly impact net power exportation of the combined-cycle hydrogen-fired power plant; i.e., the ionic-liquid gas-to-wire exports 35.6% more electricity than the aqueous-amine counterpart. Economically, the ionic-liquid gas-to-wire has 36% higher revenues, entailing a net value 2.5 times higher (US$ 390.2*106) and 5 years lower payback-time than the conventional aqueous-amine counterpart.

Keywords: Autothermal reforming; Hydrogen; Gas-to-Wire; Pre-combustion; Ionic-liquid; CCS (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120302860
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302860

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.109995

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120302860