An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries
Kailong Liu,
T.R. Ashwin,
Xiaosong Hu,
Mattin Lucu and
W. Dhammika Widanage
Renewable and Sustainable Energy Reviews, 2020, vol. 131, issue C
Abstract:
Prediction of battery calendar ageing is a key but challenging issue in the development of durable electric vehicles. This paper simultaneously evaluates three mainstream types of modelling techniques for calendar ageing prediction of Lithium-ion (Li-ion) batteries. They are the pseudo two dimensional (P2D)-based electrochemical model, Arrhenius law-based semi-empirical model, and Gaussian process regression (GPR)-based data-driven model. Specifically, both the electrochemical and semi-empirical models are consciously developed or selected from the state-of-the-art modelling literature. For the data-driven model, due to the limited research in the existing publications, a machine learning-enabled GPR model is derived and applied for calendar ageing prediction. An experimental setup is developed to load the commercial Panasonic NCR18650BD batteries and to collect the experimental calendar ageing data under different storage temperature and SOC levels over 435 days. Based upon this well-rounded database, each model is well trained through using its corresponding training solution. Then the prediction performances of these models are studied and evaluated in terms of the model accuracy, generalization ability and uncertainty management. Both the challenges and future prospects of each model type are highlighted to assist the industrial and academic research communities, thus boosting the progress of designing advanced modelling techniques in battery calendar ageing prediction domain.
Keywords: Lithium-ion battery; Calendar ageing prediction; Electrochemical model; Semi-empirical model; Data-driven model; Electric vehicle (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120303087
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120303087
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110017
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().