A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings
Benedetto Grillone,
Stoyan Danov,
Andreas Sumper,
Jordi Cipriano and
Gerard Mor
Renewable and Sustainable Energy Reviews, 2020, vol. 131, issue C
Abstract:
Increasing the energy efficiency of the built environment has become a priority worldwide and especially in Europe. Because of the relatively low turnover rate of the existing built environment, energy efficiency retrofitting appears to be a fundamental step in reducing its energy consumption. Last experiences have shown that there is a vast energy efficiency potential lying in the building stock, and it is mainly untapped. One of the reasons is a lack of robust methodologies able to evaluate the effect of applied energy efficiency measures and inform about the expected impact of potential retrofitting strategies. Nowadays, dynamic measured data coming from automated metering infrastructure provides valuable information to evaluate the effect of energy conservation strategies. For this reason, energy performance modeling and assessment methods based on this data are starting to play a major role. In this paper, several methodologies for the measurement and verification of energy savings, and for the prediction and recommendation of energy retrofitting strategies, are analysed in detail. Practitioners looking at different options for these two processes, will find in this review a thorough and detailed overview of the different methods that can be used. Guidance is also provided to determine which method could work best depending on the specific case under analysis. The reviewed approaches include statistical learning models, machine learning models, Bayesian methods, deterministic approaches, and hybrid techniques that combine deterministic and data-driven modeling. Existing research gaps are identified and prospects for future investigation are presented within the main conclusions of this research work.
Keywords: Building energy retrofitting; Energy savings evaluation; Data driven approach; Measurement and verification; Retrofitting decision support; Energy performance improvement (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212030318X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:131:y:2020:i:c:s136403212030318x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110027
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().