Comparative analysis of building insulation material properties and performance
Dileep Kumar,
Morshed Alam,
Patrick X.W. Zou,
Jay G. Sanjayan and
Rizwan Ahmed Memon
Renewable and Sustainable Energy Reviews, 2020, vol. 131, issue C
Abstract:
Building envelope insulation is crucial for an energy-efficient and comfortable indoor environment because the envelope accounts for 50–60% of total heat gain/loss in a building. Previous studies mostly used lifecycle cost as the criteria to select the optimum insulation materials with little or no consideration of embodied energy, emission, and summer overheating potential. This study presents a comparative analysis of building insulation materials properties (thermal, hygroscopic, acoustic, reaction to fire, environmental, and cost) and their performance in different climate zones and proposed an optimization framework. Insulation materials can be primarily categorized as conventional, state-of-the-art and sustainable. State-of-the-art insulation materials have the lowest thermal conductivity value amongst the three insulation types. However, their life cycle cost is higher compared to the other types. Sustainable insulation materials could be useful to delay and minimize indoor peak temperature and reduce overheating risk during the hot summer period. The analysis also showed that building walls with comparatively lower thermal resistance are more cost-effective for the cooling dominated region, but walls with higher thermal resistance are more cost-effective in heating-dominated regions. However, highly insulated and airtight houses may also lead to increased overheating risk and peak cooling demand during a hot summer period. In addition, hygroscopic, acoustic, and fire retardancy properties of insulation materials are critical to control indoor relative humidity in a humid region, to maintain a minimum noise level in a zone, and to reduce fire destruction. Hence, the optimization should include four criteria 1) Energy, 2) Environment, 3) Economic, and 4) Comfort.
Keywords: Insulation; Optimization; Energy efficiency; Emission; Life cycle cost; Embodied energy; Thermal comfort (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120303294
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120303294
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110038
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().