EconPapers    
Economics at your fingertips  
 

Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms

Mumtaz Ali, Ramendra Prasad, Yong Xiang and Ravinesh C. Deo

Renewable and Sustainable Energy Reviews, 2020, vol. 132, issue C

Abstract: Globally, major emphasis is currently being put in utilization and optimization of more sustainable and renewable energy resources, to overcome the future energy demand issues and potential energy crises due to many socioeconomic factors. A near-real-time i.e., half-hourly significant wave height (Hsig) forecast model is designed using a suite of selected model input variables where the multiple linear regression (MLR) model, considering the influence of several variables, is optimized by covariance-weighted least squares (CWLS) estimation algorithm to generate a hybridized MLR-CWLS model with a capability to forecast 30-min ahead Hsig values. First, a diagnostic statistical test based on the correlation coefficient is performed to determine relationships between inputs denoting historical behaviour and the target (Hsig) at one lag of 30-min (t – 1) scale. Subsequently, the data are split into training and testing subsets, following a normalization process, and the MLR-CWLS hybridized model is then trained and validated on the testing dataset adopted from eastern coastal zones of Australia that has a high potential for wave energy generation. Hybridized MLR-CWLS model is benchmarked against competing modelling approaches (multivariate adaptive regression splines-MARS, M5 Model Tree, and MLR) via statistical score metrics. The results show that the hybridized MLR-CWLS model is able to generate reliable forecasts of Hsig relative to the counterpart comparison models. The study ascertains the practical utility of the hybridized MLR-CWLS model for Hsig modelling with significant implications for its potential application in wave and ocean energy generation systems, and some of the other renewable and sustainable energy resource management.

Keywords: Wave energy; Significant wave height; MLR; CWLS; MARS; M5 tree (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212030294X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:132:y:2020:i:c:s136403212030294x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.110003

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:132:y:2020:i:c:s136403212030294x