EconPapers    
Economics at your fingertips  
 

Energy efficiency of latent heat storage systems in residential buildings: Coupled effects of wall assembly and climatic conditions

J. Kočí, J. Fořt and R. Černý

Renewable and Sustainable Energy Reviews, 2020, vol. 132, issue C

Abstract: The European Union emphasizes the decrease in energy consumption of buildings as a key priority of its energy policy. Incorporation of phase change materials (PCMs) into conventional building materials is considered as a solution which may partially contribute to the efforts aimed at meeting this priority. Although promising results have been achieved, some PCM-utilization related issues are still to be addressed in order to fill the gaps in the field of real-world applications. In this paper, the effect of plasters modified by PCM on diatomite- and n-dodecanol basis on the energy performance of building envelopes is analyzed, taking into account various climatic loads and material compositions characteristic for the European countries. The obtained results, which are based on coupling the geographical and structural aspects, provide a good background for the assessment of suitability of PCM applications in building envelopes. The efficiency of the analyzed latent heat storage systems is found very sensitive to a combination of material composition and geographical locations. In precisely tailored applications, possible annual savings on heating and cooling can range between 3.7 and 6.5 kWh per square meter of the façade. However, most of the PCM-based systems should be considered with caution as both economic and environmental feasibility is not unambiguous. As the present state of the art focuses mainly on specific load bearing structures or locations, the conceptual approach presented in this study can bring a new insight into the utilization of latent heat storage systems in residential buildings.

Keywords: Phase change material; Energy savings; Building; Plaster; Energy consumption; Computational modeling; Climatic load; Wall assembly (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120303889
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303889

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.110097

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303889