Influence of alternative fuels on the particulate matter micro and nano-structures, volatility and oxidation reactivity in a compression ignition engine
Dongxu Mao,
Meisam Ahmadi Ghadikolaei,
Chun Shun Cheung,
Zhaojie Shen,
Wenzheng Cui and
Pak Kin Wong
Renewable and Sustainable Energy Reviews, 2020, vol. 132, issue C
Abstract:
The present study investigates the impact of various alternative fuels, including biodiesel, methanol, ethanol, butanol and pentanol, on the micro and nano-structures, volatility and oxidation reactivity of particulate matter (PM) from a 4-cylinder compression ignition engine under low (10%) and high (80%) engine loads at a constant engine speed of 1800 rpm. Four alcohols were mixed with diesel and biodiesel to obtain ternary fuels. The overall oxygen concentration of each ternary fuel was fixed at 6% by mass for establishing the same condition for comparing. In addition to the ternary fuels, pure biodiesel was also compared with diesel fuel. The results of the micro and nano-structures characteristics obtained from a Scanning Transmission Electron Microscope (STEM) reveal that the alternative fuels can disorder the PM micro and nano-structures, and also the particles produced by these fuels have lower primary particle diameter, particle agglomerate size and fringe length, however, higher fringe tortuosity and almost equal (insignificant rise) fringe separation distance compared to those produced by diesel fuel. The results obtained from a Thermogravimetric Analyzer/Differential Scanning Calorimeter (TGA/DSC) show that both biodiesel and alcohols have the potential to increase in PM volatile substances and oxidation reactivity rate, and decrease in PM non-volatile substances in comparison with those of diesel fuel. It is concluded that the pure biodiesel has the highest impact on the PM structure, volatility and oxidation reactivity among all the tested alternative fuels, while methanol has the highest impact on these parameters among all the tested alcohol fuels.
Keywords: Alcohol fuel; Alternative fuel; Diesel engine; PM oxidation reactivity; PM structure; Ternary fuel (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120303993
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303993
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110108
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().