Humans in the city: Representing outdoor thermal comfort in urban canopy models
I. Pigliautile,
A.L. Pisello and
E. Bou-Zeid
Renewable and Sustainable Energy Reviews, 2020, vol. 133, issue C
Abstract:
The negative effects of urban heat islands (UHIs) on citizens' well-being and life quality are widely acknowledged, but they still represent critical challenges, particularly since urban population is predicted to rise to 60% of the world population by 2030. Computational models have become useful tools for addressing these challenges and investigating urban microclimate repercussions on citizens' comfort and urban liveability. Despite that, humans typically remain absent from such models. This work bridges this gap, moving beyond purely thermodynamic Urban Canopy Models (UCMs) to highlight the importance of integrating even simplified pedestrians' biophysics for comfort assessment. Human physiology parameterization is therefore introduced into the Princeton Urban Canopy Model (PUCM), which had been designed to investigate the effect of greenery and novel materials on the UHI. Human thermal comfort is assessed in terms of the skin temperature and then evaluated against the apparent temperature, a widely-used thermal comfort indicator. Different configurations of the same urban canyon are therefore tested to assess the effectiveness of cool materials and trees for human thermal comfort enhancement. Results show that cool skins in the canyon's built environment lead to an air temperature reduction up to 1.92 K, but slightly worsen human comfort in terms of a warmer computed skin temperature by 0.27 K. The indirect effect of trees, that exclude shading, are negligible for human thermal comfort. The new integrated human-centric model can help policymakers and urban planners to easily assess the potential benefits or threats to citizens' well-being associated with specific urban configurations.
Keywords: Urban microclimate; Urban heat island; Urban heat mitigation; Thermal comfort; Human energy balance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120303944
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120303944
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110103
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().