Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review
Fengming Ran,
Yunkang Chen,
Rongshuai Cong and
Guiyin Fang
Renewable and Sustainable Energy Reviews, 2020, vol. 134, issue C
Abstract:
Phase-change materials (PCMs) are good media for thermal energy storage because of their high latent heat. However, PCMs have some disadvantages such as leakage, corrosivity and instability. These problems can be solved by microencapsulating PCMs to form microencapsulated phase-change materials (MPCMs). A microencapsulated phase-change slurry (MPCS) made of MPCMs and a single-phase fluid (water) is an excellent heat-transfer and thermal storage medium. The MPCM core materials are mostly paraffin and other organic PCMs with low thermal conductivity, resulting in low storage and transportation efficiency in thermal energy systems. MPCS is also limited in practical application due to high pumping power consumption, instability and unknown durability. Many review articles mainly showed the preparation methods, thermal and physical parameters of heat transfer characteristics and flow characteristics on MPCS. At present, there is no review paper to summarize and compare the existing specific experiments and theoretical models, and there is no quantitative research. Therefore, this review summarizes the flow and heat-transfer characteristics of MPCS by combining existing models and experiments, and analyzes the heat-transfer enhancement mechanism in detail. The synthesis of MPCS and the factors influencing its stability and durability are also introduced and analyzed. Applications of MPCS in buildings, solar energy systems, photovoltaic/thermal systems, the food industry and the textile industry are also presented and summarized. This review aims to provide a reference for preparing MPCS with better performance, for promoting large-scale applications of MPCS in various thermal energy fields, and for improving thermal energy utilization efficiency.
Keywords: Thermal energy utilization; Microencapsulated phase change slurry; Flow characteristics; Heat transfer characteristics; Heat transfer enhancement (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120303920
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120303920
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110101
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().