EconPapers    
Economics at your fingertips  
 

Long-term spatial and temporal solar resource variability over America using the NSRDB version 3 (1998–2017)

Aron Habte, Manajit Sengupta, Christian Gueymard, Anastasios Golnas and Yu Xie

Renewable and Sustainable Energy Reviews, 2020, vol. 134, issue C

Abstract: The study assesses the long-term spatial and temporal solar resource variability in America using the 20-year National Renewable Energy Laboratory's (NREL's) National Solar Radiation Database (NSRDB). The coefficient of variation (COV) is used to analyze the spatial and temporal (interannual and seasonal) variability. Further, both spatial and temporal long-term variability are analyzed using the Köppen-Geiger climate classification. The temporal variability is found that, on average, the continental United States (CONUS) COV reaches up to 5% for global horizontal irradiance (GHI) and 10% for direct normal irradiance (DNI), and that the NSRDB domain's COV is roughly twice that of CONUS. For the seasonal variability analysis, the winter months are found to exhibit higher COV than the other seasons. In particular, December exhibits the highest variability, reaching on average 30% for DNI and 20% for GHI over various areas. On the other hand, the summer months demonstrate significantly lower variability, reaching only less than 20% for DNI and 10% for GHI, on average. Similarly, the spatial variability is analyzed by comparing each pixel to its neighbors. The long-term spatial variability is found to increase with the number of neighboring pixels being considered, which is equivalent to an increase in distance (within a 100-km x 100-km square grid). As expected, the DNI spatial variability is higher than that of GHI. Moreover, the annual solar irradiance anomalies are found to reach ±25% for both GHI and DNI (and even exceed those value in some instances) during each year of the 20-year period.

Keywords: Spatiotemporal variability; National solar radiation database (NSRDB); Physical solar model (PSM); Solar energy; Global horizontal irradiance (GHI); Direct normal irradiance (DNI); Coefficient of variation (COV) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120305736
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120305736

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.110285

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120305736