Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development
Ahmed AlSayed,
Moomen Soliman and
Ahmed Eldyasti
Renewable and Sustainable Energy Reviews, 2020, vol. 134, issue C
Abstract:
Microbial fuel cells (MFCs) in municipal wastewater treatment plants (M-WWTPs) have garnered increasing interest in terms of attaining energy self-sufficiency due to their theoretical superiority to conventional M-WWTP processes. Despite being widely studied, pertaining literature primarily focuses on the fundamentals and configurations of the MFCs while overlooking their targeted application niche. Therefore, the adoption of MFCs in many niches (i.e., M-WWTPs) has not been adequately reviewed yet. This study aims to critically review the adoption of MFCs for carbon handling in the liquid stream of M-WWTPs with an emphasis on MFC's scalability, use of municipal wastewater (M-WW) as the substrate, and MFC's capital cost. The review includes the scaled-up results and other efforts to engineer MFCs. Three key challenges stymie MFC's adoption in M-WWTPs: low power generation, wide range of reported carbon removal efficiencies, and high capital cost. Accordingly, MFCs should be adopted in M-WWTPs with the goal of energy neutrality, not extra electricity production. To meet the effluent discharge standards, MFCs should be preceded by primary treatment, followed by an anaerobic fluidized bed membrane bioreactor. However, breakthroughs are still required to make this technology cost-efficient and energy-efficient. These efforts should take into consideration the multivariate nature of the MFCs. Additionally, the development of bioelectrochemically assisted anaerobic technologies has shown great prominence as an alternative technology that can be integrated into M-WWTPs. However, validation based on larger-scale applications, cost, and energy estimations is still needed.
Keywords: Municipal wastewater treatment plants; Microbial fuel cells; Energy self-sufficiency; MFC scalability; Bioelectrochemically assisted anaerobic technologies (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120306559
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120306559
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110367
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().