Review of heat transfer enhancement techniques for single phase flows
Mohamed H. Mousa,
Nenad Miljkovic and
Kashif Nawaz
Renewable and Sustainable Energy Reviews, 2021, vol. 137, issue C
Abstract:
The thermal energy exchange between a flowing fluid and its confining channel is a ubiquitous process in modern society. To enhance the fluid-to-wall or wall-to-fluid heat transfer, several techniques have been developed to maximize the contact area between the fluid and the inner wall and/or disrupt the flow to enhance circulation or induce turbulence. Deployment of channels having features capable of enhancing heat transfer enables the reduction of heat exchanger size while maintaining performance. Reduction in equipment size is critical due to the ability to minimize the required volume of costly working fluids and to mitigate potential safety concerns associated with total system fluid volume. Here, a comprehensive review of single-phase heat transfer enhancement techniques is presented. The article provides a thorough comparison by analyzing the heat transfer rate, pressure drop, and other operational aspects. Single-phase heat transfer enhancement methods are divided into active and passive techniques. Active methods such as electrohydrodynamic (EHD), magnetohydrodynamics (MHD), or mechanical motion require external power to create enhancement. Passive methods such as dimples, fins, or tape inserts do not require external input and rely only on surface modification. Although active methods are more expensive and difficult to implement compared to passive techniques, it enables active control of heat transfer augmentation. This review develops and summarizes key learning data for design optimization enabled by additive manufacturing and machine learning algorithms, helping to inform these next-generation heat exchanger design methodologies for a plethora of modern applications such as electrification of vehicles, computing, and classical industries.
Keywords: Heat transfer augmentation; Swirl flow; Pressure drop; Passive heat transfer; Active heat transfer; Nusselt number; Friction factor; Twisted tape; Insert; Internal flow; Boundary layer (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120308509
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308509
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110566
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().