The water footprint of carbon capture and storage technologies
Lorenzo Rosa,
Daniel L. Sanchez,
Giulia Realmonte,
Dennis Baldocchi and
Paolo D'Odorico
Renewable and Sustainable Energy Reviews, 2021, vol. 138, issue C
Abstract:
Carbon capture and sequestration (CCS) is an important technology to reduce fossil CO2 emissions and remove CO2 from the atmosphere. Scenarios for CCS deployment consistent with global climate goals involve gigatonne-scale deployment of CCS within the next several decades. CCS technologies typically involve large water consumption during their energy-intensive capture process. Despite potential concerns, the water footprint of large-scale CCS adoption consistent with stringent climate change mitigation has not yet been explored. This study presents the water footprints (m3 water per tonne CO2 captured) of four prominent CCS technologies: Post-combustion CCS, Pre-combustion CCS, Direct Air CCS, and Bioenergy with CCS. Depending on technology, the water footprint of CCS ranges from 0.74 to 575 m3 H2O/tonne CO2. Bioenergy with CCS is the technology that has the highest water footprint per tonne CO2 captured, largely due to the high water requirements associated with transpiration. The widespread deployment of CCS to meet the 1.5 °C climate target would almost double anthropogenic water footprint. Consequently, this would likely exacerbate and create green and blue water scarcity conditions in many regions worldwide. Climate mitigation scenarios with a diversified portfolio of CCS technologies have lower impacts on water resources than scenarios relying mainly on one of them. The water footprint assessment of CCS is a crucial factor in evaluating these technologies. Water-scarce regions should prioritize water-efficient CCS technologies in their mitigation goals. In conclusion, the most water-efficient way to stabilize the Earth's climate is to rapidly decarbonize our energy systems and improve energy efficiency.
Keywords: Water footprint; Carbon dioxide removal; Carbon capture and storage; Negative emission technologies; Water scarcity; Sustainability; Climate change (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120307978
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120307978
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110511
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().