Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review
B. Li,
C. Delpha,
D. Diallo and
A. Migan-Dubois
Renewable and Sustainable Energy Reviews, 2021, vol. 138, issue C
Abstract:
The rapid development of photovoltaic (PV) technology and the growing number and size of PV power plants require increasingly efficient and intelligent health monitoring strategies to ensure reliable operation and high energy availability. Among the various techniques, Artificial Neural Network (ANN) has exhibited the functional capacity to perform the identification and classification of PV faults. In the present review, a systematic study on the application of ANN and hybridized ANN models for PV fault detection and diagnosis (FDD) is conducted. For each application, the targeted PV faults, the detectable faults, the type and amount of data used, the model configuration and the FDD performance are extracted, and analyzed. The main trends, challenges and prospects for the application of ANN for PV FDD are extracted and presented.
Keywords: Photovoltaic; Artificial neural network; Fault detection; Fault classification; Machine learning; Deep learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212030798X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:138:y:2021:i:c:s136403212030798x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110512
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().