Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria
Jae Won Lee,
Seonggon Kim,
Israel Torres Pineda and
Yong Tae Kang
Renewable and Sustainable Energy Reviews, 2021, vol. 138, issue C
Abstract:
Nanoabsorbents manufactured by dispersing nanomaterials in liquid absorbents have attracted considerable attention from researchers and exhibit various promising applications because of their excellent heat- and mass-transfer characteristics. Therefore, many experimental and theoretical studies have been conducted recently to investigate the mass-transfer performance enhancement of nanoabsorbents in different fields. This paper reviews the mass-transfer characteristics and enhancement mechanisms of nanoabsorbents for CO2 capture. The proposed enhancement mechanisms are discussed in terms of both absorption (bubble breaking, shuttle, and interfacial mixing effects) and regeneration (activation energy, thermal, and surface effects) processes using nanoabsorbents. The results of laboratory-scale experiments and parametrical analysis indicate that the CO2 absorption performance of nanomaterials is maximized when they exhibit a high surface area, high thermal conductivity, small cluster size, and magnetic properties, which can be explained using the proposed theoretical models. Based on this, the following selection criteria for nanomaterials to maximize the CO2 absorption/regeneration performance are proposed: thermophysical properties, powder/cluster size, concentration, and addition of nanoabsorbents. In the future, mass-transfer studies need to be conducted for real-life applications and should account for dispersion stability and integrated absorption/regeneration processes. Moreover, optimum geometric conditions and gas–liquid contact modes need to be achieved in the reactor for real-life applications. Finally, this paper suggests future research directions for the absorption and regeneration of CO2 for industrial applications, including the scale-up method, numerical approach, and life cycle analysis.
Keywords: CO2 absorption; CO2 capture; CO2 regeneration; Mass-transfer enhancement; Nanoabsorbents; Nanomaterials (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120308091
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120308091
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110524
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().