EconPapers    
Economics at your fingertips  
 

Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu–Ni doped ZrO2 catalyst

Mamoona Munir, Mushtaq Ahmad, Muhammad Saeed, Amir Waseem, Abdul-Sattar Nizami, Shazia Sultana, Muhammad Zafar, Mohammad Rehan, Gokul Raghavendra Srinivasan, Arshid Mahmood Ali and Muhammad Ishtiaq Ali

Renewable and Sustainable Energy Reviews, 2021, vol. 138, issue C

Abstract: The rapid depletion of fossil fuel resources and climatic changes has triggered the researchers' attention to find an alternative and renewable energy source. Thus, biodiesel has been recognized as a potential alternative to petrodiesel for its biodegradability, non-toxicity, and environment-friendly attributes. In this study, an efficient and recyclable Cu–Ni doped ZrO2 catalyst was synthesized and used to produce biodiesel from a novel non-edible caper (Capparis spinosa L.) seed oil. The synthesized catalyst was characterized by x-ray diffraction, fourier-transform infrared spectroscopy, scanning electron microscopy, and energy dispersive x-ray analysis. The catalyst was reused in four consecutive transesterification reactions without losing any significant catalytic efficiency. Transesterification reaction conditions were optimized via response surface methodology based on Box-Behnken design for predicting optimum biodiesel yields by drawing 3D surface plots. Maximum biodiesel yield of 90.2% was obtained under optimal operating conditions of 1:6 M ratio of oil to methanol, reaction temperature of 70 °C, reaction time of 1.5 h, and 2.5% catalyst loading. Fourier-transform infrared spectroscopy, gas chromatography–mass spectrometry, and nuclear magnetic resonance (1H and 13C) analysis confirmed the high quality of biodiesel produced from non-edible caper (Capparis spinosa L.) seed oil. The fuel properties of the produced biodiesel were also found, such as kinematic viscosity (4.17 cS T), density (0.8312 kg/L), flash point (72 °C), acid no (0.21 mgKOH/g) and sulphur content (0.00042 wt%). These properties were matched and are in close agreement with the International Biodiesel Standards of European Union (EU-14214), China GB/T 20,828 (2007), and American (ASTM6751). Thus, non-edible Capparis spinosa L. seed oil and Cu–Ni doped ZrO2 catalyst appeared to be highly active, stable, and cheap candidates to boost the future biodiesel industry.

Keywords: Bioenergy; Transesterification; Sustainable energy; Biofuel; Renewable energy; Box-behnken design; Capparis spinosa L (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212030842X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:138:y:2021:i:c:s136403212030842x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.110558

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s136403212030842x