EconPapers    
Economics at your fingertips  
 

Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality

Tariq Ahmed, Prashant Kumar and Laetitia Mottet

Renewable and Sustainable Energy Reviews, 2021, vol. 138, issue C

Abstract: In buildings, energy is primarily consumed by mechanical air conditioning systems. Low energy alternatives, such as natural ventilation, are needed. However, they need to be able to cope with increasing heatwaves and pollution, particularly in warm climates. This review paper looked at the ability of natural ventilation to provide adequate thermal comfort, resilience against heatwaves, and good Indoor Air Quality in warm climates. Single-sided ventilation demonstrates the poorest ability to provide thermal comfort, while cross ventilation highlights better performance in terms of reducing indoor air temperatures compared to outdoor. However, windcatchers and solar chimneys displayed even better performance by producing relatively high ventilation rates. During heatwaves and future climatic scenarios, natural ventilation, by cross-ventilation, was not able to meet internal thermal comfort standards. A potential low energy solution could be combining solar chimneys or windcatchers with water evaporation cooling. A critical synthesis of the literature suggests that these systems can generate high ventilation rates and keep indoor temperatures around 8 °C cooler than outdoor temperatures in warm weather (>35 °C). However, no studies were found testing these systems against future climate scenarios, and further studies are recommended. The literature supported natural ventilation being effective in removing pollution generated indoors due to adequate ventilation rates. However, using unfiltered natural ventilation for areas with high outdoor pollution can increase the indoor deposition of harmful particulate matter. With increasing air pollution, further studies are urgently required to investigate filter enabled natural ventilation, particularly with solar chimney/windcatcher incorporated.

Keywords: Natural ventilation; Sustainability; Built environment; Heatwaves; Thermal comfort; Air pollution; Solar chimney; Windcatcher; Wind tower (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120309539
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120309539

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.110669

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:138:y:2021:i:c:s1364032120309539