Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode
Binbin Mao,
Chaoqun Liu,
Kai Yang,
Shi Li,
Pengjie Liu,
Mingjie Zhang,
Xiangdong Meng,
Fei Gao,
Qiangling Duan,
Qingsong Wang and
Jinhua Sun
Renewable and Sustainable Energy Reviews, 2021, vol. 139, issue C
Abstract:
A series of thermal runaway (TR) tests are conducted on the 300 Ah large-scale lithium iron phosphate (LiFePO4) batteries under external heating. The combustion process of the battery can be divided into four stages, and the aggressive cylindrical flame is observed. Due to the battery's large size, the TR expanding process within the battery body is clearly observed based on the temperature rate curves of different surfaces. The flaming combustion accelerates the occurrence of TR but has little influence on the peak surface temperature. The cooling effect of safety valve opening on each thermocouple is influenced by the electrolyte distribution inside the cell. A real-scale scenario is considered to evaluate the fire-induced toxicity of an electric bus that a 10 cell pack combusts in a garage with fresh air renewal. The fractional effective dose is much greater than the critical value of 1, indicating the catastrophic toxicity. The air renewal rate required for safety is calculated to provide advice for the ventilation management of garage. The battery fire is compared with the pool and gas fires of common fuels. It is found that this large-scale LiFePO4 battery has the higher specific capacity and superior safety performance in the aspect of heat release features after comparing with previous LIB samples.
Keywords: Lithium ion battery safety; Thermal runaway; Fire behavior; 300 Ah; Influence factors (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121000149
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:139:y:2021:i:c:s1364032121000149
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.110717
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().