Effects of depth-cycling on nutrient uptake and biomass production in the giant kelp Macrocystis pyrifera
Ignacio A. Navarrete,
Diane Y. Kim,
Cindy Wilcox,
Daniel C. Reed,
David W. Ginsburg,
Jessica M. Dutton,
John Heidelberg,
Yubin Raut and
Brian Howard Wilcox
Renewable and Sustainable Energy Reviews, 2021, vol. 141, issue C
Abstract:
Seasonal or chronic nutrient limitations in the photic zone limit large-scale cultivation of seaweed (macroalgae) in much of the world's oceans, hindering the development of macroalgae as a biofuel feedstock. One possible solution is to supply nutrients using a diel depth-cycling approach, physically moving the macroalgae between deep nutrient-rich water at night and shallow depths within the photic zone during the day. This study tested the effects of depth-cycling on the growth, morphology, and chemical composition of the giant kelp Macrocystis pyrifera, a target species for renewable biomass production. Giant kelp grown under depth-cycling conditions had an average growth rate of 5% per day and produced four times more biomass (wet weight) than individuals grown in a kelp bed without depth-cycling. Analysis of tissue from the depth-cycled kelp showed elevated levels of protein, lower C:N ratios, and distinct δ15N and δ13C values suggesting that the depth-cycled kelp were not nitrogen-deficient and assimilated nutrients from deep water. Depth-cycled kelp also exhibited smaller and thicker-walled pneumatocysts and larger blades. Overall, this study supports further investigation of depth-cycling as a macroalgal farming strategy.
Keywords: Biofuel; Kelp; Depth-cycling; Nutrients; Open-ocean; Mariculture; Macroalgae (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121000423
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000423
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.110747
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().