EconPapers    
Economics at your fingertips  
 

Microfluidic fuel cells with different types of fuels: A prospective review

Yifei Wang, Shijing Luo, Holly Y.H. Kwok, Wending Pan, Yingguang Zhang, Xiaolong Zhao and Dennis Y.C. Leung

Renewable and Sustainable Energy Reviews, 2021, vol. 141, issue C

Abstract: Since its first appearance in 2002, microfluidic fuel cell has received great attention in the past two decades, which is mainly targeted at its use in portable electronics. This micro fuel cell technology utilizes microfluidic flows as electrolyte instead of conventional polymer membranes. To date, various fuels have been utilized in it, such as vanadium species, hydrogen, hydrocarbons, hydrogen peroxide, borohydride and nitrogenous materials, each of which has its specific merits and demerits. To optimize its power output and fuel utilization, innovative cell structures and advanced catalysts have been continuously developed for different fuels, with remarkable improvements achieved. The power output can be elevated from several mW cm−2 to several W cm−2 at room temperature, while the fuel utilization per single pass can reach 100% by using 3D flow-through electrodes. Also, investigations in recent years have shown that microfluidic fuel cell stacking increases the working voltage. In addition to cells with plastic channel, novel cell designs based on cellulose paper and fabric materials have also been proposed; apart from being lightweight, they are also free from pumping. These innovative cell designs represent a promising route for achieving real applications in areas such as medical diagnostic, wearable healthcare and smart logistics. As for the conventional plastic cells, they are currently less competitive against batteries and other fuel cells because of the extra pumping requirement, which should be resolved in future by developing passive pumps instead. Alternatively, they can be applied in specific circumstances where the extra pumping loss is tolerable.

Keywords: Microfluidic fuel cell; Membraneless fuel cell; Laminar flow fuel cell; Fuel cell stack; Paper based fuel cell; Fabric based fuel cell; Dual electrolyte; Flow-through electrode (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121001015
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121001015

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2021.110806

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121001015