Operational-dependent wind turbine wake impact on surface momentum flux
Aliza Abraham and
Jiarong Hong
Renewable and Sustainable Energy Reviews, 2021, vol. 144, issue C
Abstract:
As wind energy continues to expand, increased interaction between wind farms and their surroundings can be expected. Using natural snowfall to visualize the air flow in the wake of a utility-scale wind turbine at unprecedented spatio-temporal resolution, intermittent periods of strong interaction between the wake and the ground surface are observed and the momentum flux during these periods is quantified. Significantly, two turbine operational-dependent pathways that lead to these periods of increased wake-ground interaction are identified. The first is caused by changes in tip speed ratio that lead to blade tip vortex leapfrogging, and the second results from increased power generation and the corresponding increase in tip vortex strength and wake expansion. Data from a nearby meteorological tower provides further insights into the strength and persistence of the enhanced flux for each pathway under different atmospheric conditions. Through the discovery of these pathways, discrepancies can be resolved between previous conflicting studies on the impact of wind turbines on surface fluxes. Furthermore, the results are used to generate a map of the potential impact of wind farms on surface momentum flux throughout the Continental United States, providing a valuable resource for wind farm siting decisions.
Keywords: Wind energy; Surface momentum flux; Wind turbine wake; Flow visualization using natural snowfall; Field study; Environmental impact (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121003117
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121003117
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111021
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().