Artificial intelligence techniques for enabling Big Data services in distribution networks: A review
Sara Barja-Martinez,
Mònica Aragüés-Peñalba,
Íngrid Munné-Collado,
Pau Lloret-Gallego,
Eduard Bullich-Massagué and
Roberto Villafafila-Robles
Renewable and Sustainable Energy Reviews, 2021, vol. 150, issue C
Abstract:
Artificial intelligence techniques lead to data-driven energy services in distribution power systems by extracting value from the data generated by the deployed metering and sensing devices. This paper performs a holistic analysis of artificial intelligence applications to distribution networks, ranging from operation, monitoring and maintenance to planning. The potential artificial intelligence techniques for power system applications and needed data sources are identified and classified. The following data-driven services for distribution networks are analyzed: topology estimation, observability, fraud detection, predictive maintenance, non-technical losses detection, forecasting, energy management systems, aggregated flexibility services and trading. A review of the artificial intelligence methods implemented in each of these services is conducted. Their interdependencies are mapped, proving that multiple services can be offered as a single clustered service to different stakeholders. Furthermore, the dependencies between the AI techniques with each energy service are identified. In recent years there has been a significant rise of deep learning applications for time series prediction tasks. Another finding is that unsupervised learning methods are mainly being applied to customer segmentation, buildings efficiency clustering and consumption profile grouping for non-technical losses detection. Reinforcement learning is being widely applied to energy management systems design, although more testing in real environments is needed. Distribution network sensorization should be enhanced and increased in order to obtain larger amounts of valuable data, enabling better service outcomes. Finally, the future opportunities and challenges for applying artificial intelligence in distribution grids are discussed.
Keywords: Machine learning; Deep learning; Smart grid; Distribution grid; Smart energy service (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121007413
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007413
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111459
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().