EconPapers    
Economics at your fingertips  
 

Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches

Ieuan Collins, Mokarram Hossain, Wulf Dettmer and Ian Masters

Renewable and Sustainable Energy Reviews, 2021, vol. 151, issue C

Abstract: In the last decade, there has been a growing trend towards flexible body wave energy converters (WECs) enabled by rubber-like elastomeric composite membrane structures that can simplify all aspects of WEC design. Currently, there are few literature studies detailing the implementations of membranes into WEC design. This paper aims to overcome this by reviewing the developments, material selection and modelling procedures for novel membrane based wave energy converters (mWECs), providing the reader with a comprehensive overview of the current state of the technology. In the first half of this paper, all of the possible WEC implementation areas are reviewed which include the primary mover, power take-off (PTO) and other sub-assembly systems. For the primary mover, the review has identified three main working surface approaches using membranes, these are: air-filled cells, water filled tubes and tethered carpets; which aim to reduce peak loads for enhanced reliability and survivability. In other areas, the PTO of WECs can benefit from using soft dielectric elastomer generators (DEGs) which offer a simpler designs compared with conventional mechanical turbomachinery. These have been implemented into the membrane working surface as well as replacing the PTO in existing WEC architectures. In the second half of the paper, a discussion is made on the material selection requirements with a few possible compositions presented. Following this, the potential modelling procedures for these devices is detailed. The device numerical models have altered existing procedures to take into account the non-linearities caused by the membrane interface and membrane PTO damping.

Keywords: Wave energy harvesting; Flexible membrane; Elastomeric membranes; Dielectric elastomer generators; Fluid–structure interaction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121007590
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121007590

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2021.111478

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121007590