Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy
G. Ondrasek,
M. Bubalo Kovačić,
I. Carević,
N. Štirmer,
S. Stipičević,
N. Udiković-Kolić,
V. Filipović,
D. Romić and
Z. Rengel
Renewable and Sustainable Energy Reviews, 2021, vol. 151, issue C
Abstract:
Global promotion of decarbonisation by using sustainable bio-renewables is associated with generation of ash residues whose amounts have increased exponentially in the last decades. Bioashes are physicochemically complex, ultra-alkaline, and potentially hazardous solids, but with a huge potential to become (co)products with environmental/economic value. Their diverse nature lends itself to a wide range of uses in land remediation, wastewater treatment, civil and bio-tech engineering, end even medicine. However, there are issues hindering the usage of bioashes as valuable resources: i) large variation among specific fractions and types, ii) strong and long-lasting reactivity and potential toxicity, and iii) an incoherent, often non-existent, legislative and regulatory framework for management of specific bio-wastes. Overcoming these obstacles and uncertainties regarding the ecological and economic benefits vs. negative side-effects is a significant challenge. The research and implementation work is urgently needed to i) elucidate dosage-dependent biological outcomes of bioash amendments, especially those related to soil and aquatic microbiomes as the primary living barriers/biofilters for most substances released from bioashes, and ii) transform finely powdered matrices to easy-to-apply forms (from nano/micro-to mm-sized agglomerates) to reduce human health implications. The continued progress in material sciences and nanotechnology offers a fascinating array of solutions for re-purposing bioashes; however, given the stringent quality-demanding criteria, the separation and concentration of targeted submatrices (e.g. aluminosilicates) from the bulk bioashes are yet to be achieved on the lab to industrial scales. Meanwhile, a significant reuse potential of bioashes will remain under-exploited and compounded by the adverse environmental issues arising from landfill disposal.
Keywords: Bio-renewable; Pozzolanic material; Solid co-products; Acid soils; Metal contamination; Wastewater treatment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121008182
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008182
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111540
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().