A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice
Shuangjun Li,
Xiangzhou Yuan,
Shuai Deng,
Li Zhao and
Ki Bong Lee
Renewable and Sustainable Energy Reviews, 2021, vol. 152, issue C
Abstract:
Adsorption CO2 capture technology has been regarded as one of the most promising approaches for effectively mitigating greenhouse gas (GHG), by which global warming could be controlled as well. The Intergovernmental Panel on Climate Change (IPCC) reported that the temperature increases should be kept within 1.5 °C other than 2 °C, implying that some more typical negative-emissions technologies (NETs) should be intensively investigated, such as the biomass-derived CO2 adsorption process driven by solar thermal energy. In this review, for the post-combustion CO2 capture, the biomass-derived CO2 temperature swing adsorption (TSA) combining the potential of low-grade thermal energy utilization was primarily addressed. In terms of adsorbent, adsorber, and adsorption process, the biomass-derived CO2 adsorption capture was reviewed as the main guideline to achieve the negative-emissions targets. The development of high-performance biomass-derived CO2 adsorbent was investigated firstly, including the thermo-chemical conversion techniques, activation treatment, and surface modification. Biomass-derived CO2 adsorption technology could be verified as one cost-effective and environment-friendly method for alleviating climate change. From the view of heat and mass transfer, the design and optimization of CO2 adsorber were also reviewed for high-efficiently achieving biomass-derived CO2 capture process. Thirdly, the system design for the entire process was discussed from the thermodynamics view, suggesting that the biomass-derived CO2 adsorption capture driven by low-grade solar thermal energy could become more preferable and feasible for commercial-scale application. Finally, concluding remarks and future perspectives for biomass-derived CO2 adsorption capture were addressed.
Keywords: Biomass; Porous carbon; CO2 adsorption; Adsorption reactor; Solar thermal energy; Negative emissions (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121009825
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009825
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111708
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().