Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition
M. Borasio and
S. Moret
Renewable and Sustainable Energy Reviews, 2022, vol. 153, issue C
Abstract:
Deep decarbonisation – i.e. the transition towards net-zero emissions energy systems – will be enabled by a high penetration of intermittent renewables, storage and sector-coupling technologies. In this paper, we present a novel modelling approach to capture the increasing complexity of such future energy systems and help policy makers choose among the different possible transition scenarios. Salient features of our model, consisting of an extended and regionalised version of EnergyScope (Limpens et al., 2019 [1]), are a low computational time and a concise formulation which make it suitable for uncertainty and what-if analyses. As a case study, the model is applied to devise scenarios for the Italian energy transition. Specifically, we develop the first open-source whole-energy system model of Italy and assess the feasibility of its decarbonisation strategy with respect to uncertainties in the deployment of carbon capture and storage (CCS) and renewable technologies. Results show that emissions can be cut by 79%–97% vs. 1990 levels thanks to a radical electrification of the energy system coupled to a wide deployment of renewables and efficient energy conversion technologies. Finally, we discuss the synergies, advantages and disadvantages of our proposed approach with respect to alternative modelling approaches used across 88 recent deep decarbonisation studies. The analysis suggests that our model, thanks to its computational efficiency and a snapshot approach (i.e., modelling a target-year in the future), can complement more detailed and established energy models optimising the energy transition pathway (i.e., modelling the pathway from today to the target year).
Keywords: Energy planning; Energy transition; Decarbonisation; Energy systems; Energy modelling; Italy; Uncertainty (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121010030
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010030
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111730
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().