EconPapers    
Economics at your fingertips  
 

Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions

Y. Li, V. Arulnathan, M.D. Heidari and N. Pelletier

Renewable and Sustainable Energy Reviews, 2022, vol. 154, issue C

Abstract: The livestock sector is a key source of greenhouse gas emissions and other impacts. Poultry (meat and eggs) is the fastest growing livestock sector globally. Poultry housing, including both infrastructure and operating energy, may account for as much as 50% of the total non-renewable energy (non-RE) use and up to 20%–35% of some of the life cycle impacts of poultry production. The application of net zero energy (NZE) building technologies (i.e. that enable net zero non-RE consumption on site) for poultry housing represents a promising but under-considered mitigation strategy, which could help lessen reliance on fossil fuels and reduce greenhouse gas (GHG) emissions. Insights from commercial and residential net zero energy building (NZEB) research can, to a limited extent, inform design considerations for NZE poultry housing, but a variety of unique design considerations and challenges inherent to confined, intensive animal husbandry must be considered. Towards this end, this review seeks to: 1) identify insights from research of residential and commercial NZEBs that might be applied in designing NZE poultry housing; 2) quantify the magnitude and distribution of energy use in poultry housing in order to determine key energy consuming components; and 3) identify priority design considerations for NZEBs for intensive confined poultry production, taking into account the physiological requirements of poultry as well as specific requirements for intensive, confined production. To accomplish these goals, 249 relevant papers were identified and reviewed. It was found that, similar to commercial/residential applications, design strategies should focus on a combination of aspects respectively aimed at (1) reducing direct energy (DE) use via structural design, (2) improving the energy efficiency of active technology systems and (3) installing context-appropriate renewable energy (RE) generation systems. Some common passive design strategies like maximizing glazed area may be less applicable for poultry housing where photoperiod control is required. Heating (during heating seasons) and ventilation (during cooling seasons) are the two main contributors to DE use in poultry housing but vary considerably based on geography and climate. HVAC systems should hence be a priority focus, considering the high ventilation rates required in confined poultry housing in order to maintain air quality. However, any modifications to current technologies should be based on careful consideration of the physiological requirements of poultry (for example, ambient temperature, air quality, feed and water provision, etc.), along with local climatic factors, technical feasibility and availability of alternative technologies, as well as both environmental and economic payback times.

Keywords: Poultry housing design; Net zero energy building; Energy efficiency; Life cycle assessment; Renewable energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121011412
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121011412

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2021.111874

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121011412