EconPapers    
Economics at your fingertips  
 

Total CO2-equivalent life-cycle emissions from commercially available passenger cars

Johannes Buberger, Anton Kersten, Manuel Kuder, Richard Eckerle, Thomas Weyh and Torbjörn Thiringer

Renewable and Sustainable Energy Reviews, 2022, vol. 159, issue C

Abstract: The international passenger car market is undergoing a transition from vehicles with internal combustion engines to hybrid and fully electrified vehicles to reduce the climate impact of the transportation sector. To emphasize the importance of this needed change, this paper provides holistic comparisons of the total life-cycle greenhouse gas (GHG) emissions produced by a wide selection of commercially available passenger cars with different powertrains and energy sources. Simple analytical models are used to quantify the total life-cycle GHG emissions in terms of CO2-equivalent values relative to the vehicle curb weight and the peak motor power. The production, utilization and recycling emissions are separately quantified based on the latest reviewed emission coefficient values. In total 790 different vehicle variants are considered. The results show that Battery Electric Vehicles have the highest production emissions. For example, the additional production emissions of a Tesla Model 3 Standard Plus approximately correspond to the driving emissions of a Volkwagen Passat 2.0 TSI after 18 000km. Nonetheless, it is shown that conventional gasoline and diesel vehicles emit the highest amount of total life-cycle GHGs in comparison to vehicles powered by other available energy resources. When using green electricity, plug-in hybrid electric and fully electric vehicles can reduce the total life-cycle emission in comparison to combustion engine vehicles by 73% and 89%, respectively. A similar emission reduction is achieved by biogas powered vehicles (81%). Fuel cell vehicles approximately reduce the GHG emission to a similar extent as electric vehicles (charged with conventional electricity) when using commercially available gray hydrogen (60%).

Keywords: Battery production; Life-cycle CO2 emissions; Passenger car; Transport fuel; Vehicle emissions; Well-to-Wheel (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122000867
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000867

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112158

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000867