Prognostics and health management of Lithium-ion battery using deep learning methods: A review
Ying Zhang and
Yan-Fu Li
Renewable and Sustainable Energy Reviews, 2022, vol. 161, issue C
Abstract:
Prognostics and health management (PHM) is developed to guarantee the safety and reliability of Lithium-ion (Li-ion) battery during operations. Due to the advantages of deep learning on nonlinear modeling and representation learning, it gains considerable attentions in the PHM of Li-ion battery. To provide a comprehensive view of deep learning-based PHM of Li-ion battery, this paper summarizes these applications on the basis of current research. Deep learning-based PHM of Li-ion battery roughly involves three steps, namely data acquisition, deep learning methods and performance evaluation. Firstly, regular data types and public datasets are introduced. Secondly, brief introductions of deep learning methods and their applications to PHM of Li-ion battery are summarized. These deep learning methods include autoencoder, deep neural network, deep belief network, convolutional neural network, recurrent neural network and generative adversarial network. Thirdly, commonly-used evaluation metrics are presented. Finally, the paper draws a conclusion and presents the prospects of PHM of Li-ion battery with deep learning techniques.
Keywords: Prognostics and health management; Lithium-ion battery; Deep learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122002015
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002015
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112282
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().