EconPapers    
Economics at your fingertips  
 

Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater

Yong Cheng, Weiming Du, Saishuai Dai, Chunyan Ji, Maurizio Collu, Margot Cocard, Lin Cui, Zhiming Yuan and Atilla Incecik

Renewable and Sustainable Energy Reviews, 2022, vol. 161, issue C

Abstract: Combining multiple-types of Wave Energy Converters (WECs) and integrating them into in-development or pre-existing marine platforms can reduce the total Levelised Cost of Energy (LCoE) by sharing infrastructures and maintenance costs. The current study proposes an innovative multi-purpose solution by deploying an Oscillating Buoy (OB) device inside the chamber of an Oscillating Water Column (OWC) WEC integrated into a π-type floating breakwater. A fully non-linear time-domain model based on the Higher-Oder Boundary Element Method (HOBEM) is established to investigate the hydrodynamic performance of the proposed concept. The non-linear time-domain model is generalised to incorporate the OWC (aero and hydrodynamics coupling) and multi-body interaction. A series of simulations are performed to examine the hydrodynamic performance of the proposed hybrid concept. Results were compared with an isolated breakwater and an OWC-integrated breakwater, demonstrating that the proposed hybrid concept has a beneficial impact on both wave energy conversion and transmitted wave attenuation. In addition, long-period waves enter into the chamber more easily, which leads to a larger inner water motion and pressure fluctuation in the chamber. Importantly, there exists a coupled resonant motion between the OB device and the water surface in the chamber, which enhances the maximum capture efficiency and the efficiency frequency bandwidth. The asymmetric OB with a triangle-shaped bottom is found to absorb the wave energy along with the water depth more effectively. Despite the better performance, the current design does not increase the characteristic system volume and has no external moving part, making it ideal for array deployment.

Keywords: Wave energy converter; Oscillating water column; Oscillating buoy; Floating breakwater; Integrated system; Fully non-linear simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122002167
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002167

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112299

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002167