Time-dependent solar aperture estimation of a building: Comparing grey-box and white-box approaches
Xiang Zhang,
Christoffer Rasmussen,
Dirk Saelens and
Staf Roels
Renewable and Sustainable Energy Reviews, 2022, vol. 161, issue C
Abstract:
This paper proposes a B-splines integrated method combining in-situ data with grey-box modeling to estimate buildings' dynamic solar gain more efficiently than the conventional white-box model and much more precisely than the classic grey-box model. Solar gain, referring to the overall indoor energy gain supplied by solar radiation, plays a vital role in the indoor energy balance. Estimating dynamic solar gain precisely is essential to building energy optimization, e.g., in model predictive control. However, in almost all existing grey-box modeling works, a constant solar gain factor (solar aperture; gA) is assumed to estimate dynamic solar gain, which almost certainly will result in solar gain prediction errors, especially in buildings with unevenly distributed windows. To fill this gap, this study presents an advanced B-splines integrated grey-box model, using customized B-splines to advance the constant gA assumption toward its nature of time-dependence and precisely characterize the dynamic solar gain conclusively. On-site measured datasets of a portable site office (PSO) representing a ‘simplified’ building, under two scenarios with windows fully or partially uncovered, serve as test cases. To verify the physical interpretation of outcomes estimated by the proposed method, based on the said test cases, the proposed B-splines integrated grey-box model is compared with a classic white-box simulation. It is concluded that the proposed method can reveal the main trends and key dynamic features of solar gain very well, but still has some limitations of quantifying ‘local’ details with acceptable variations. Nevertheless, given that the proposed method merely asks for a very limited amount of low-frequency data, the proposed method is considered as a much more effective alternative to the classic white-box simulation approach, which requires massive and often hard-to-collect input data.
Keywords: Solar gain; Dynamic solar aperture (gA); Grey-box model; Building energy simulation; Direct normal irradiance; Comparative study (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122002507
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002507
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112337
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().