On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage
Zhixiong Ding,
Wei Wu and
Michael K.H. Leung
Renewable and Sustainable Energy Reviews, 2022, vol. 164, issue C
Abstract:
Thermal energy storage is an important means for achieving carbon neutrality. Absorption thermal battery is a promising solution for renewable energy utilization due to its excellent energy storage performance and operational flexibility. This study conducts comparative investigations among different absorption thermal battery cycles from a multi-criteria perspective, including energy storage efficiency, energy storage density, exergy efficiency, charging temperature, and initial cost. Except for the existing cycles (i.e., basic cycle, compression-assisted cycle, double-stage cycle, and double-effect cycle), a novel double-effect compression-assisted cycle is also included to cover a wider range of design options. The effects of charging/discharging/cooling temperatures on the storage performance are analyzed in three scenarios, i.e., short-term cold storage, short-term heat storage, and long-term heat storage. Results indicate that the compression-assisted cycle and the double-stage cycle can improve the energy storage density and lower the charging temperatures (e.g., below 70 °C); the double-effect cycle can enhance the energy storage efficiency; the double-effect compression-assisted cycle can achieve improvements in energy storage efficiency and density simultaneously, with a maximum energy storage efficiency above 1.30 and energy storage density over 300 kWh/m3, and bridge the temperature gap (i.e., 100 °C–140 °C) between the single-effect and double-effect cycles. The maximum energy storage efficiency, energy storage density, and exergy efficiency are 1.53, 365.4 kWh/m3, and 0.61, achieved by the double-effect cycle, the compression-assisted cycle, and the basic cycle, respectively. This work aims to facilitate the rational development of absorption thermal battery cycles for high-density and high-efficiency thermal energy storage towards carbon neutrality.
Keywords: Absorption thermal battery; Energy storage density; Energy storage efficiency; Exergy efficiency; Thermal energy storage (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122004567
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:164:y:2022:i:c:s1364032122004567
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112557
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().