Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks
A. Shafaghat and
A. Keyvanfar
Renewable and Sustainable Energy Reviews, 2022, vol. 167, issue C
Abstract:
Nations have attempted to commit to the Kyoto Protocol and effectively reduce hazardous emissions through energy-efficient design techniques, strategies, and policies (optimized building orientation and location, and photovoltaic systems and green materials). However, there are shortcomings in achieving these goals. The Energy Efficiency Directive, Energy Performance Directive of Buildings, and Chartered Institution of Building Services Engineers have recently focused on dynamic façade design that can considerably contribute to energy-efficient building design and low-emission development. This study comprehensively investigates and identifies dynamic façade typologies, technologies, and techniques while comparing and synthesizing them against architectural design, structural engineering, and material science. In particular, the study investigated the applications, functionalities, and state-of-the-art (SOTA) of dynamic façades. In addition, the structural and architectural characteristics, environmental performance, and effectiveness of dynamic façades (clustered into opaque, transparent, and semi-transparent surface types) have been explored and synthesized. The study concludes that applying the dynamic façade concept entails challenges and opportunities for building developers, users, and auditors. Furthermore, dynamic façade design is a trade-off between environmental analysis data (such as luminance and solar radiation) and user comfort and satisfaction with both the light and thermal intensity of external and internal environments. In addition, dynamic façades can actively and selectively control the heat transfer and energy flow while potentially reducing the internal heating and cooling loads. Therefore, adaptive façades are designed based on behavior changes at the micro-scale (i.e., material structure) or macro-scale (i.e., moving part configuration).
Keywords: Dynamic façade; Energy-efficient building; Energy performance; Low-emission development; Thermal comfort; Lighting control (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122005408
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122005408
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112647
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().