A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems
Markel Penalba,
Jose Ignacio Aizpurua,
Ander Martinez-Perurena and
Gregorio Iglesias
Renewable and Sustainable Energy Reviews, 2022, vol. 167, issue C
Abstract:
The potential of Marine Renewable Energy (MRE) systems is usually evaluated based on recent metocean data and assuming the stationarity of the MRE resource. Yet, different studies in the literature have shown long-term resource variations and even the connection between ocean warming and wave power variations. Therefore, it is crucial to accurately characterise the future resource, including these long-term variations. To that end, this paper presents a novel data-driven forecasting approach through the combination of machine-learning (ML) and oceanic engineering concepts. First, the historical resource is characterised in the Bay of Biscay, including the different long-term trends identified based upon the dataset obtained via the SIMAR model ensemble. Secondly, the most relevant features of the metocean dataset are extracted and selected via advanced statistical techniques. Finally, three different ML algorithms are designed, validated and tested. All three ML models demonstrate to adequately represent the overall pattern of the dataset, although showing difficulties with reproducing particular peak values. Accordingly, an alternative interval prediction approach is presented for three different wave height discretisation levels, showing a greater potential for long-term metocean data forecasting.
Keywords: Metocean data; Re-analysis data; Long-term trend; Wave forecasting; Machine learning; Regression algorithms; Classification algorithms (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122006372
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006372
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112751
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().