EconPapers    
Economics at your fingertips  
 

A Review of the Effects of Haze on Solar Photovoltaic Performance

Seyyed Ali Sadat, Bram Hoex and Joshua Pearce

Renewable and Sustainable Energy Reviews, 2022, vol. 167, issue C

Abstract: Solar photovoltaic (PV) deployments are growing rapidly to provide a sustainable source of electricity, but their output is strongly impacted by environmental phenomena such as soiling and low irradiance conditions induced by haze from urban sources, dust, and bushfire smoke. This review examines the effects of haze on PV performance, highlights significant results, and identifies apparent research gaps in the current literature. In addition to the severe health issues caused by industrial exhausted aerosol, dust storms particles, and bushfire smoke, reduction in irradiance (in some cases up to 80%) is the most dominant impact of these sources of haze. Haze also causes changes in the received solar spectrum, and higher bandgap PV materials are more affected by the presence of haze and aerosols in the atmosphere by 20-40% than low bandgap semiconductors. In many cities throughout the world, pollution-related haze causes substantial annual revenue loss to PV operators. In addition, haze imposes severe effects on direct irradiance; therefore, tracking systems and concentrated PV systems are most affected. These technical impacts of haze all indicate the need for careful customization of PV systems for specific locations. In addition, to increase global PV output, it is clear that air pollution control regulations such as China’s national policies against air pollution and eco-friendly international actions such as COP26 should be employed and executed. Further studies are needed including indoor experiments, forecasting future implications of aerosols on PV energy conversion, and performing energy policy analysis to identify associated challenges and propose practical strategies.

Keywords: Photovoltaics; Performance assessments; Solar energy generation; Haze concentration; Air pollution; Irradiance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122006803
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006803

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112796

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122006803