Uncertainty in model prediction of energy savings in building retrofits: Case of thermal transmittance of windows
K.E. Anders Ohlsson,
Gireesh Nair and
Thomas Olofsson
Renewable and Sustainable Energy Reviews, 2022, vol. 168, issue C
Abstract:
Energy saving in buildings is an important measure for mitigation of climate change. There exists a large potential for energy saving in buildings by improving the thermal performance of windows. For decisions on energy saving window retrofits, accurate estimation of the energy saved and its uncertainty is of importance. The ISO 15099 standard, which is normative for thermal modelling of windows within the building sector, does not give uncertainty estimates. The main novelty of this study was to provide uncertainty analysis for model prediction of the thermal transmittance of windows, in the perspective of decisions on window retrofits. For this purpose, we proposed a new simplified model, which facilitated uncertainty analysis, and still was similar to the ISO 15099 window model. The model was validated by application of a benchmark validation procedure to a set of previously performed validation experiments. Main conclusions were: (i) The model was accurate within a prediction uncertainty equal to 0.20 Wm−2K−1; (ii) The domain where the model is valid was described using existing well-documented validation experiments. This domain was restricted to windows with glazing thermal transmittance corresponding to 2-layer glazing, and to windows where the frame area is a minor part of the total window area. (iii) The prediction uncertainty was mainly determined by the measurement uncertainty in the validation experiments; (iv) If a window retrofit is based on reduction of window thermal transmittance, then this reduction has to be larger than 0.56 Wm−2K−1 in order to yield energy savings above the uncertainty limit.
Keywords: Model validation; Uncertainty analysis; Window thermal transmittance; Energy saving measure; Mitigation of climate change; Benchmarking energy models (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122006359
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006359
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112748
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().