Microencapsulated phase change materials with graphene-based materials: Fabrication, characterisation and prospects
Weiguang Su,
Meiyong Hu,
Li Wang,
Georgios Kokogiannakis,
Jun Chen,
Liying Gao,
Anqing Li and
Chonghai Xu
Renewable and Sustainable Energy Reviews, 2022, vol. 168, issue C
Abstract:
Microencapsulated phase change material (MEPCM) is an efficient thermal energy storage material. However, the heat charging/discharging rate of MEPCMs is limited by their low thermal conductivity. Graphene-based materials (i.e. graphene, graphene oxide (GO), reduced graphene oxide (rGO)) have ultrahigh thermal conductivity and have been used as thermal conductive enhancement materials in MEPCMs. This paper reviewed the preparation and characterisation methods of graphene-based materials for MEPCMs. The in-situ polymerization method is the most widely adopted for the preparation of graphene-based microcapsules, and GO-enhanced MEPCM could generate the best morphology result. By embedding graphene in organic shell hybrid structure, the thermal conductivity of microcapsules was increased to as high as 7.2 W/(m∙K). The addition of graphene significantly reduced the supercooling and more than 90% of the leakage rate of MEPCM. It also effectively improved the mechanical strength and photothermal conversion efficiency of MEPCM. In addition, GO exhibits amphiphilicity and can be used as an emulsifier for the preparation of Pickering emulsions. Its amphiphilic properties can be adjusted by: mixing GO with other emulsifiers, altering its pH value, surface modification, and fabricating Janus GO. Graphene can also be used in the preparation of Pickering emulsions after surface modification. Graphene quantum dots (GQDs) is used as a zero-dimensional surfactant due to their oxygen-containing functional groups, which exhibit good amphiphilic properties. In summary, it is beneficial to modify graphene-based materials as surfactants to replace conventional surfactants during the preparation of oil-water emulsions and high-quality MEPCMs.
Keywords: Microencapsulated phase change materials (MEPCM); Thermal conductive enhancement; Graphene; GO; GO surface Modification; Pickering emulsions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212200689X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:168:y:2022:i:c:s136403212200689x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112806
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().