Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains
Martin János Mayer and
Dazhi Yang
Renewable and Sustainable Energy Reviews, 2022, vol. 168, issue C
Abstract:
Physical model chain is a step-by-step modeling framework for the conversion of irradiance to photovoltaic (PV) power. When a model chain is fed with irradiance forecasts, it provides the corresponding PV power forecasts. Despite its advantages, forecasting with model chains has yet to receive the attention that it deserves. In several recent works, however, the idea of model-chain-based solar forecasting has been formally modernized, though the framework was restricted to deterministic forecasting. In this work, the model-chain-based forecasting framework is extended to the probability space, in that, a calibrated ensemble of model chains is used to generate probabilistic PV power forecasts. Using two-year data from eight PV plants in Hungary, alongside professional weather forecasts issued by the Hungarian Meteorological Services, it is empirically shown that the raw model-chain ensemble forecasts tend to be underdispered, but adequate post-processing is able to improve calibration and reduce the continuous ranked probability score of raw ensembles by 20%. Given the fact that uncertainty quantification has a cardinal importance to grid integration, this probabilistic extension of the model-chain-based solar forecasting framework is thought beneficial.
Keywords: Probabilistic solar forecasting; Physical model chains; Photovoltaic power; Quantile regression; Irradiance-to-power conversion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122007043
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007043
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112821
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().