EconPapers    
Economics at your fingertips  
 

Australia-Japan telecoupling of wind power-based green ammonia for passenger transportation: Efficiency, impacts, and sustainability

Hongfang Lu, Bin-Le Lin, Daniel E. Campbell, Yanjia Wang, Wenqi Duan, Taotao Han, Jun Wang and Hai Ren

Renewable and Sustainable Energy Reviews, 2022, vol. 168, issue C

Abstract: Ammonia is a renewable energy medium appropriate for distant trading; therefore, many countries and companies have formulated ambitious strategies to develop energy transitions to use green ammonia for transportation systems. However, the associated social, economic and environmental impacts, and the overall viability and sustainability of these transitions are still a mystery, because of the lack of sufficiently complicated evaluations. To fill this gap, an integrated life cycle assessment and emergy evaluation (LCA-EME) method was developed and applied to synthesize, compare and recognize the hotspot nodes of resource depletion, emissions and impacts, and to quantify the exploitation and utilization efficiencies, environmental loadings and sustainability of the Australia-Japan telecoupling of wind power-based ammonia for electric vehicles (EV) and hydrogen fuel cell vehicles (FCV) used for passenger transportation, compared with two fossil fuel-based EV transportation systems. The results revealed that the transition to ammonia-based fuels can reduce nonrenewable energy consumption by >29.64% and Greenhouse Gas (GHG) emissions by >10.00%; however, the demand for emergy resources >2.03 times and biotic endpoint impacts >1.56 times, both of which mainly occurred in the sending subsystem of the telecoupling interaction. The results highlighted the necessity of internalizing the ‘external’ resource stress and its biotic impacts, increasing the utilization efficiency and the recycling rate of minerals and fresh water, and decreasing the endpoint impacts to guarantee the sustainability of the telecoupled energy transitions. Integrated LCA-EME was confirmed as a valuable tool for handling complex, multi-nodal nexus problems of telecoupling, which is widely needed for energy transition strategy making.

Keywords: Resource depletion; Emissions; Biotic endpoint impacts; Efficiency; Sustainability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122007663
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007663

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112884

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007663