Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives
Fazil Qureshi,
Mohammad Yusuf,
Hesam Kamyab,
Dai-Viet N. Vo,
Shreeshivadasan Chelliapan,
Sang-Woo Joo and
Yasser Vasseghian
Renewable and Sustainable Energy Reviews, 2022, vol. 168, issue C
Abstract:
The worldwide economic development, population expansion, and technological advancements contribute to a rise in global primary energy consumption. Since fossil fuels now provide around 85% of the energy requirement, a significant quantity of greenhouse gases is released, leading to climate change. To meet the pledges of the Paris agreement, a promising and potential alternative to fossil fuels needs to be commercialised. Therefore, numerous industries recognise hydrogen (H2) as a clean and stable energy source for decarbonisation or de-fossilisation. Around 90% of the world's H2 produced is grey in nature and produced from reforming fossil-based fuels. However, the future of H2 energy lies in its green, blue, and turquoise spectra due to the carbon capture scheme and corresponding clean and sustainable H2 production methodology. The fundamental goal of this research is to learn more about various low-carbon H2 generating systems. In comparison to fossil-based H2, green H2 is a costly option. Blue H2 offers several appealing characteristics; however, the carbon capture utilisation and storage (CCUS) technology are expensive and blue H2 is not carbon-free. The current CCUS technology can only store and catch between 80 and 95% of CO2. Further, it examines worldwide actions related to the H2 development policy. In addition, a debate based on the colour spectrum of H2 was established to classify the purity of H2 generation. Further, the existing obstacles, advancements, and future directions of low-carbon H2 production technologies, including fossil fuel-based and renewable-based H2, are explored to foster the growth of the low-carbon H2 economy.
Keywords: Energy; Sustainable hydrogen production; Greenhouse gases emission; Bioeconomy; Hydrogen spectra (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122007973
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007973
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112916
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().