Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty
Sunwoo Kim,
Yechan Choi,
Joungho Park,
Derrick Adams,
Seongmin Heo and
Jay H. Lee
Renewable and Sustainable Energy Reviews, 2024, vol. 190, issue PA
Abstract:
Given the steep rises in renewable energy's proportion in the global energy mix expected over several decades, a systematic way to plan the long-term deployment is needed. The main challenges are how to handle the significant uncertainties in technologies and market dynamics over a large time horizon. The problem is further complicated by the fast-timescale volatility of renewable energy sources, potentially causing grid instability and unfulfilled demands. As a remedy, energy storage and power-to-hydrogen systems are considered in conjunction with energy management system but doing so raises the complexity of the planning problem further. In this work, the long-term capacity planning for a hybrid microgrid (HM) system is formulated as a multi-period stochastic decision problem that considers uncertainties occurring at multiple timescales. Long-term capacity decisions are inherently linked with energy dispatch and storage decisions occurring at fast-timescale and it is best to solve for them simultaneously. However, the computational demand for solving it becomes quickly intractable with problem size. To this end, we propose to develop a Markov decision process (MDP) formulation of the problem and use simulation-based reinforcement learning for multi-period capacity investments of the planning horizon. The MDP includes the policies used for dispatch and storage operation, which are represented by linear programming as a part of the simulation model. The effectiveness of our proposed method is demonstrated with a case study, where decisions over multiple decades are considered along with various uncertainties of multi-timescales. Economic and environmental assessments are performed, providing valuable guidelines for government's energy policy.
Keywords: Hybrid microgrid; Capacity investment planning; Energy management system; Dynamic multi-period and multi-timescale decision-making; Multi-timescale uncertainty; Green hydrogen (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032123009073
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:190:y:2024:i:pa:s1364032123009073
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2023.114049
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).